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Abstract

Chebyshev spectral collocation method based on discrete ordinates equation is developed to solve radiative transfer problems in a one-
dimensional absorbing, emitting and scattering semitransparent slab with spatially variable refractive index. For radiative transfer equation, the
angular domain is discretized by discrete ordinates method, and the spatial domain is discretized by Chebyshev collocation spectral method. Due
to the exponential convergence of spectral methods, a very high accuracy can be obtained even using few nodes for present problems. Numerical
results by the Chebyshev collocation spectral-discrete ordinates method (SP-DOM) are compared with those available data in references. Effects
of refractive index gradient on radiative intensity are studied for space dependent scattering media. The results show that SP-DOM has a good
accuracy and efficiency for solving radiative heat transfer problems in even spatially varying absorbing, emitting, scattering, and graded index
media.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In graded index media, the ray goes along a curved path de-
termined by the Fermat principle. As a result, the solution of
radiative transfer in graded index media is more difficult than
that in uniform index media. The radiative heat transfer in a
semitransparent media with a graded index has evoked wide in-
terest of many researchers. In the early 1993, Siegel and Spuck-
ler [1] have developed a model of one-dimensional composite
media made of several sublayers, each of them being treated
as a slab at uniform index bounded by diffuse surfaces. Ben
Abdallah and Le Dez [2,3] presented a curved ray tracing tech-
nique to analyze the radiative heat transfer in semitransparent
media with a graded index. Huang et al. [4] proposed a ray split-
ting and tracing method to solve the problem of radiative heat
transfer in graded index media. For the radiative transfer prob-
lems in one-dimensional semitransparent media with spatially
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variable refractive index, Liu et al. [5] proposed a Monte Carlo
curved ray-tracing technique, Huang et al. developed a com-
bined curved ray-tracing and pseudo-source adding method [6],
and a discrete ray-tracing method [7–10]. Recently, Tan et al.
[11] proposed the discrete ray-tracing method to solve transient
coupled heat transfer in semitransparent media with graded
refractive index. Huang et al. [12] proposed a backward ray
tracing method and a backward Monte Carlo method to solve
heat transfer in two-dimensional semitransparent medium with
graded refractive index. The discrete ordinates method (DOM)
for the radiative transfer equation (RTE) for a slab with vari-
able refractive index is presented by Lemonnier and Le Dez
[13]. Other methods for this kind of problems are finite ele-
ment method (FEM) [14], finite volume method (FVM) [15],
meshless local Petrov–Galerkin method (MLPG) [16], and least
squares spectral element method (LSSEM) [17].

In the field of numerical simulations, it is well known that
the FEM and the FVM can provide linear convergence, while,
the spectral methods can provide exponential convergence [18].
Spectral methods have been widely applied in computational
fluid dynamics [19,20], electrodynamics [21] and magnetohy-
drodynamics [22,23]. Despite the high accuracy and efficiency
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of spectral methods, they are seldom applications of spectral
methods in radiative heat transfer computation. Recently, for
radiative and conductive heat transfer in a concentric spherical
and cylindrical media with a uniform index, Aouled–Dlala et al.
[24] proposed a finite Chebyshev transform (FCT) to treat the
angular derivative terms in cylindrical and spherical systems. Li
et al. [25] have developed the Chebyshev collocation spectral
method for one-dimensional radiative heat transfer even with
anisotropic space dependent scattering medium with a uniform
index.

In this paper, we extend the collocation spectral method to
solve the radiative transfer problem in a one-dimensional semi-
transparent slab with a graded index based on discrete-ordinates
equation. In the following of this paper, the physical model
and governing equation will be presented in the second sec-
tion. The SP-DOM formulations for radiative transfer equation
for graded index media and the solution procedure will be pre-
sented in detail in the third section. Validations by typical cases
with available numerical results and the discussion of effects
of the refractive index gradient on radiative intensity are made
in the fourth section. Finally, the last section gives the conclu-
sions.

2. Physical model and governing equation

We consider one-dimensional semitransparent gray absorb-
ing, emitting and scattering slab with thickness L bounded by
two opaque, diffuse and gray walls (see Fig. 1). The refractive
index n(x) varies along the axis coordinate x. The absorption
coefficient and scattering coefficient are ka and ks . On both
sides of the slab, the emissivities are ε0 and εL, and the tem-
peratures are assumed to be T0 and TL, respectively.

The governing equation for radiative transfer in one-dimen-
sional absorbing, emitting, and scattering media with graded
index in term of radiation intensity reads [13]

n2 d

ds

(
I (x,μ)

n2

)
+ (ka + ks)I (x,μ)

= n2kaIb(x) + ks

2

1∫
−1

I (x,μ′)Φ(μ′,μ)dμ′

in [0,L] × [−1,1] (1)

with boundary conditions:

I (0,μ) = ε0n
2
0
σT 4

0

π
+ 2(1 − ε0)

0∫
−1

I (0,μ′)|μ′|dμ′

on x = 0, μ ∈ (0,1] (2a)

I (L,μ) = εLn2
L

σT 4
L

π
+ 2(1 − εL)

1∫
0

I (L,μ′)|μ′|dμ′

on x = L, μ ∈ [−1,0) (2b)

where s is the curvilinear abscissa along a (curved) path,
I (x,μ) is the radiation intensity at position x and direction co-
sine μ, Ib(x) is the blackbody radiation intensity at the temper-
Fig. 1. Physical geometry of slab.

ature of the media T (x), Φ(μ′,μ) is the scattering phase func-
tion of energy transfer from an incoming direction cosine μ′
to an outgoing direction cosine μ, and σ is Stefan–Boltzmann
constant.

In the one-dimensional Cartesian coordinate system, the
conservative form of radiative transfer equation within graded
index media can be rewritten as [13]

μ
∂I (x,μ)

∂x
+ γ

(
1 − μ2)∂I (x,μ)

∂μ

+ (ka + ks − 2γμ)I (x,μ)

= n2kaIb + ks

2

1∫
−1

I (x,μ′)Φ(μ′,μ)dμ′ (3)

where γ is the derivative of refractive index after natural loga-
rithm with respect to the coordinate x

γ = d(lnn)

dx
(4)

The boundary condition expressions for Eq. (3) take the
same form as Eq. (2).

3. Discretization of RTE for graded index media and the
solution procedure

3.1. Discrete-ordinates equation of radiative transfer equation
for graded index media

The one-dimensional DOM form of Eq. (3) reads

μm ∂Im(x)

∂x
+ γ

{
∂
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[(
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]}
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m = 1,2, . . . ,M (5)

with boundary conditions

Im
0 = ε0n

2
0σT 4

0

π
+ 2(1 − ε0)

∑
μm′

<0

Im′
0 |μm′ |wm′

μm > 0 (6a)

Im
L = εLn2

LσT 4
L

π
+ 2(1 − εL)

∑
μm′

>0

Im′
L |μm′ |wm′

μm < 0 (6b)



Y.-S. Sun, B.-W. Li / International Journal of Thermal Sciences 48 (2009) 691–698 693
The angular derivative term in Eq. (5) is discretized by cen-
tral difference scheme, and its final form can be written as [26]{

∂

∂μ

[(
1 − μ2)I (x)

]}
μ=μm

≈ αm+1/2Im+1/2 − αm−1/2Im−1/2

wm
(7)

Here, Im+1/2 and Im−1/2 are the angular intensities in the
directions m + 1/2 and m − 1/2, and the central difference
scheme is adopted to correlate them to the unknown Im, i.e.,
Im = 1

2 (Im+1/2 + Im−1/2). The constants αm±1/2 only depend
on the difference scheme and can be determined by the follow-
ing recurrences

α1/2 = αM+1/2 = 0 (8a)

αm+1/2 − αm−1/2 = −2wmμm (8b)

Now, Eq. (5) can be rewritten as
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where T is the absolute temperature distribution within the me-
dia, and is determined by

T (x) =
[

π

2σn2(x)

M∑
m=1

Im(x)wm

]1/4

(10)

In angular domain, the SN approximation has been chosen.
The ordinate direction cosine μm and quadratic weighing factor
wm are given in Ref. [27].

3.2. Chebyshev collocation spectral formulations

The Chebyshev–Guass–Lobatto collocation points [19,20,
28] are used for spatial discretization

sj = cos
πj

N
, j = 0,1, . . . ,N (11)

Then, the mapping of arbitrary interval [X1,X2] to standard
interval [−1,1] is needed to fit the requirement of Chebyshev
polynomial

s = 2x − (X2 + X1)

(X2 − X1)
, x = s(X2 − X1) + X2 + X1

2
(12)

After mapping Eq. (9) becomes
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The radiative intensity can be approximated by

Im
N (s) =

N∑
k=0

Îm
k Tk(s) (14)

where Im
N (s) ≈ Im(s), the coefficients Îm

k are determined by the
collocation points sk , k = 0,1, . . . ,N ; and the Tk(s) is the first
kind Chebyshev polynomial. The polynomial of degree N de-
fined by Eq. (14) can be the Lagrange interpolation polynomial
based on the set {si} like

Im
N (s) =

N∑
j=0

hj (s)I
m(sj ) (15)

where hj (s) is a function of the first order derivative of Cheby-
shev polynomial, and its detail definition and expression can be
found in Ref. [20].

To avoid spectral coefficients solution and fast cosine trans-
formation, we use Eq. (15) rather than Eq. (14) in Eq. (13).

3.3. Discretization and numerical implementation

Substituting Eq. (15) into Eq. (13), one can obtain the spec-
tral discretized linear equations(
Am + Bm

)
Im = Fm, m = 1,2, . . . ,M (16)

where the elemental expressions for matrix Am, Bm, and Fm

are
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and the matrix D(1)
s is the first order derivative matrix in s direc-

tion corresponding to Chebyshev–Lobatto–Lobatto collocation
points [19,20,28].

Boundary conditions, given by Eqs. (6a) and (6b), must be
imported before solving Eq. (16). For the Dirichlet boundary
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d

condition, it can be easily imported and the detail can be found
in Refs. [18–20,28].

The implementation of Chebyshev collocation spectral metho
can be carried out according to the following routine:

Step 1: Choose the number of nodes Nnode and compute the co-
ordinate values of nodes, hence to compute the deriva-
tive of refractive index γ (s) at nodes.

Step 2: Choose the direction number M and the corresponding
direction cosine, as well as the weights wm, hence to
compute the angular difference constants α.

Step 3: Give radiative intensity an initial assumption (zero, for
example) in all directions except for boundary condi-
tion, and assemble to get the matrix Fm by Eq. (17c).

Step 4: Start iteration in each angular direction for m =
1,2, . . . ,M , and assemble to get matrix Am,Bm, and
Fm by Eqs. (17a)–(17c).

Step 5: Compute the boundary radiative intensities according
to Eqs. (6a) and (6b) and import the boundary condi-
tions by Eq. (17c).

Step 6: Directly solve Eq. (16) by Im = (Am + Bm)−1Fm.
Step 7: Terminate the iteration if the relative maximum abso-

lute difference of radiative intensities, say, max{|(Im)new

− (Im)old|/(Im)old} for all nodes and directions, is less
than the tolerance (10−8 in our work, for example),
otherwise, go back to Step 4.

4. Numerical results and discussions

In the field of numerical simulations, the main superiorities
of spectral methods over others like FEM, FVM, and finite dif-
ference method (FDM), are exponential convergence and high
accuracy [18].

In our present work, the numerical results are presented for
radiation in a graded index. For the purpose of comparison with
the SP-DOM solutions, various test cases are selected because
very precise solutions of the radiative transfer equation exist.
All the computations are executed on a computer with CPU of
Pentium(R) D (3.40 GHz) and 1.49 GB RAM.

4.1. Example 1: Radiative equilibrium in non-scattering
media with linear refractive index

The SP-DOM is applied to a one-dimensional slab bounded
by black walls. As shown in Fig. 1, the temperatures of bound-
ary walls are assumed to be T0 = 1000 K and TL = 1500 K,
respectively. The absorption coefficient ka and scattering co-
efficient ks are uniform through the slab. The refractive index
of the media within the slab varies linearly with the axis co-
ordinate and can be expressed as n(x) = 1.2 + 0.6x/L. The
media within the slab is non-scattering. This case has also been
adopted as a test one by Huang et al. [6] for the pseudo source
adding method validation and Liu [14] for the finite element
method validation.

The temperature distributions by SP-DOM within the media
are plotted in Fig. 2 for three values of slab optical thicknesses,
namely, τL = 0.01, τL = 1.0, and τL = 3.0, respectively. Here
Fig. 2. Temperature distributions in the case of n(x) = 1.2+0.6x/L, ε0 = εL =
1.0.

Table 1
The dimensionless radiative heat fluxes on different nodes in the case of n(x) =
1.2 + 0.6x/L and ε0 = εL = 1.0

x/L ψ = 2π
∫ 1
−1 Iμdμ/[n2

0σ(T 4
0 − T 4

L
)]

τL = 0.01 τL = 1.0 τL = 3.0

0.00000 0.99655 0.70860 0.42303
0.03015 0.99655 0.70863 0.42306
0.11698 0.99655 0.70860 0.42303
0.25000 0.99655 0.70863 0.42306
0.41318 0.99655 0.70860 0.42303
0.58682 0.99655 0.70863 0.42306
0.75000 0.99655 0.70860 0.42303
0.88302 0.99655 0.70863 0.42306
0.96985 0.99655 0.70860 0.42303
1.00000 0.99655 0.70863 0.42306

the number of nodes Nnode = 9 is used for spatial discretiza-
tion, and the total solid angle is subdivided into M = 8. The
CPU time are 0.1736, 0.5502, 1.2540 s for τL = 0.01, τL = 1.0,
and τL = 3.0, respectively. As shown in Fig. 2, the SP-DOM re-
sults are in good agreement with the results obtained by using
the pseudo source adding method and FEM. Compared with
the results from FEM, the maximum relative error is less than
0.68%.

The SP-DOM approximation of the dimensionless radiative
heat fluxes based on different nodes within the slab with n(x) =
1.2 + 0.6x/L and ε0 = εL = 1.0 are listed in Table 1.

The dimensionless radiative heat fluxes are defined by

ψ =
[

2π

1∫
−1

Iμdμ

]/[
n2

0σ
(
T 4

0 − T 4
L

)]
(18)

Theoretically, the dimensionless radiative heat fluxes for
each node should keep the same value; however, results on
different nodes obtained by numerical methods usually oscil-
late around the averaged value. The averaged dimensionless
radiative heat fluxes for three optical thicknesses of τL = 0.01,
τL = 1.0, and τL = 3.0 by SP-DOM are ψav = 0.99655, ψav =
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Table 2
The averaged dimensionless radiative heat fluxes in the case of blackbody boundaries and linear refractive index

n0 nL τL ψav

RT [13] MLPG [16] SP-DOM

1.0 1.5 0.1 0.96960 0.97040 0.96570
1.0 1.5 1.0 0.72430 0.72410 0.70870
1.0 1.5 10.0 0.17270 0.17440 0.17120
1.0 3.0 0.1 0.98720 0.99470 0.98550
1.0 3.0 1.0 0.87200 0.87810 0.85710
1.0 3.0 10.0 0.31520 0.32560 0.30810
1.0 5.0 0.1 0.99310 1.01460 0.99170
1.0 5.0 1.0 0.92500 0.94610 0.91520
1.0 5.0 10.0 0.45360 0.48270 0.44140
0.70861, and, ψav = 0.42304, respectively. Here, the maximum
deviation |ψ − ψav|/ψav for all τL is less than 0.0037%. How-
ever, the maximum deviation is up to 0.3% in Ref. [16] for
MLPG method using 9 nodes.

The averaged dimensionless radiative heat fluxes in the case
of blackbody boundaries and linear refractive index are shown
in Table 2 for various combination of n0, nL and τL. Those
results by ray tracing (RT) and by MLPG are copied from Refs.
[13,16] for comparison. From Table 2, compared with RT, the
maximum relative error of the averaged dimensionless radiative
heat flux by MLPG [16], computed by |ψMLPG − ψRT|/ΨRT, is
6.415%. However the same comparative values computed by
|ψSP-DOM − ψRT|/ΨRT in the present work is less than 2.7%.

4.2. Example 2: Radiative equilibrium in non-scattering
media with sinusoidal refractive index

Similar as in Refs. [8,17], in this case, a non-linear refrac-
tive index is adopted. The temperatures of boundary walls are
assumed as T0 = 1000 K and TL = 1500 K, respectively. The
absorption coefficient ka and scattering coefficient ks are uni-
form through the slab. The refractive index of media within
the slab has a sinusoidal change along the axis coordinate as
n(x) = 1.8 − 0.6 sin(πx/L). The media within the slab is non-
scattering and the optical thickness is τL = 1.0.

Fig. 3 shows the temperature distributions by SP-DOM
within the slab for two different wall emissivities, namely,
ε0 = εL = 0.7 and ε0 = εL = 1.0. The CPU time are 1.2312,
0.7943 s for ε0 = εL = 0.7 and ε0 = εL = 1.0, respectively,
when using Nnode = 9 and M = 8. As shown in Fig. 3, the
results by SP-DOM agree well with those by pseudo source
adding method [8] and those by LSSEM [17]. The maximum
relative error of our results is less than 0.6% compared with the
values of Ref. [8].

Fig. 4 shows the effects of various combinations of nodes
and angular directions on numerical results under the case of
n(x) = 1.8 − 0.6 sin(πx/L), τL = 1.0, and ε0 = εL = 1.0.
Clearly, the combination of Nnode = 5 and M = 4 almost gives
the same smooth curves as the combination of Nnode = 99 and
M = 12 does. The convergent characteristic of SP-DOM is
demonstrated again in this article.
Fig. 3. Temperature distributions in the case of n(x) = 1.8 − 0.6 sin(πx/L),
τL = 1.

Fig. 4. Effects of various combinations of nodes and angular directions on the
numerical predictions in the case of n(x) = 1.8 − 0.6 sin(πx/L), τL = 1 and
ε0 = εL = 1.0.
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Fig. 5. Temperature distributions in the cases of n(x) = 1.2 + 0.6x/L, ε0 =
εL = 1.0, τL = 1 and ω = 0.8.

4.3. Example 3: Radiative equilibrium in space independent
scattering media with linear refractive index

We consider one-dimensional slab filled with scattering gray
media. The single scattering albedo of media is ω = 0.8, and
the single scattering phase function is assumed to be linear as
Φ = 1 + bμμ′. The slab is bounded by black walls and the
slab optical thickness is τL = 1.0. The temperatures of bound-
ary walls are assumed to be T0 = 1000 K and TL = 1500 K,
respectively. The absorption coefficient and the scattering co-
efficient are uniform through the slab, but the refractive in-
dex of media is a linear function of spatial coordinate x as
n(x) = 1.2 + 0.6x/L.

The temperature distributions by SP-DOM within the slab
are shown in Fig. 5 for three values of asymmetry factor b,
namely, −1, 0 and 1. For the purpose of comparisons, the pre-
dictions by Monte Carlo curved ray-tracing method [5] and fi-
nite volume method [15] are simultaneously presented in Fig. 5.
The SP-DOM results agree with those of Monte Carlo curved
ray-tracing method and FVM very well, and the maximum rel-
ative error referred to the predictions of Ref. [5] is less than
0.95%. For SP-DOM, the CPU time are 2.0118, 2.5473, and
0.6731 s corresponding to three values of asymmetry factor, i.e.,
b = −1, b = 0 and b = 1, when using Nnode = 9 and M = 8, re-
spectively.

4.4. Example 4: Radiative equilibrium in space dependent
scattering media with linear refractive index

From practical significance, more complicated situations
may appear such as anisotropic and space dependent scattering.
In order to examine the flexibility of SP-DOM for more compli-
cated problems, we finally used one-dimensional radiative heat
transfer example with graded index and space dependent scat-
tering media. The governing equation for such problem based
on discrete ordinates method is referred to Eq. (5) on the do-
main of [0,1] × [−1,1], but the space dependent scattering
coefficient ks should be replaced by ks(x) and the source term
is switched to zero. Same as in Ref. [29], keep the extinction
coefficient a unit value, i.e., β(x) = ka(x) + ks(x) = 1. The
scattering phase function is defined by

Φ =
L∑

l=0

dlPl(μ)Pl(μ
′), d0 = 1 (19)

where Pl(μ) are Legendre polynomials and dl are specified
corresponding coefficients, and L = 0 corresponds to isotropic
scattering. In this case, we choose L = 7 and dl = {1.0,

1.98398, 1.50823, 0.70075, 0.23489, 0.05133, 0.00760,

0.00048}.
The expressions of boundary conditions are

I (0,μ) = 1 on x = 0, μ ∈ (0,1] (20a)

I (1,μ) = 0 on x = 1, μ ∈ [−1,0) (20b)

This case within uniform index media has also been used as
a test case by Pontaza et al. [29].

For different graded indexes, say, n = 1.0, n(x) = 1.0 +
0.1x/L, and n(x) = 1.0 + 0.3x/L, the computed radiative in-
tensity by SP-DOM with Nnode = 9 and M = 8 is plotted in
color contour lines in Fig. 6.

As shown in Fig. 6, the refractive index gradient can signif-
icantly affect the radiative intensity distributions. Compared to
Fig. 6(a) with n = 1.0, the radiative intensities in the whole
domain shown in Fig. 6(b) increased very clearly with the
increasing of refractive index gradient from n = 1.0 up to
n(x) = 1.0 + 0.1x/L. Increase with the refractive index gra-
dient from n(x) = 1.0 + 0.1x/L (corresponding to Fig. 6(b))
up to n(x) = 1.0 + 0.3x/L (corresponding to Fig. 6(c)), the ra-
diative intensity is intensified obviously.

In graded index media, the ray goes along a curved trajec-
tory determined by the Fermat principle. According to Fig. 1
in Ref. [2], some possible trajectories passing through a given
internal point, for given angular directions of propagation; the
trajectory passing through z∗ is a particular trajectory which is
totally back reflected towards the left interface and cannot reach
the right interface. So, the radiative intensities in the whole do-
main increased in graded index media as shown in Fig. 6 in
present work.

5. Conclusions

To avoid the complicated computation of curved ray tracing,
the Chebyshev collocation spectral method based on discrete
ordinates equation is successfully applied to solve radiative heat
transfer problem in semitransparent graded index media. The
spatial dependent radiative intensity is expressed by Chebyshev
polynomials, and the governing equations are discretized using
Chebyshev collocation points in space. The results of the SP-
DOM formulation are compared with those available data in
the literatures for variable refractive index. The comparisons
indicate that the SP-DOM has a good accuracy and efficiency
even using only 9 nodes and 8 angular directions. Effects of
refractive index gradient on radiative intensity distributions are
also studied.
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(a) (b) (c)

Fig. 6. Effects of refractive index gradient on the radiative intensity distribution. (a) n = 1.0, (b) n(x) = 1.0 + 0.1x/L, (c) n(x) = 1.0 + 0.3x/L.
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